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linear heat-conduction equation is considered. Unlike traditional methods, the proposed algorithm does
not utilize approximations of the coefficient with the aid of the specified system of basis functions. The
results of computational experiments are presented.
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1. Introduction

The problems of the reconstruction of the thermal-conductivity
and diffusion coefficients of nonlinear media are of interest in cre-
ating modern technologies of producing various materials. These
problems fall into the class of inverse problems of mathematical
physics. The scientific trend associated with the theory and prac-
tice of solving nonlinear inverse heat-conduction problems takes
its origin at the middle of the second half of the 20th century
[1–16]. The present-day development of this trend is stimulated
by:

� the need in reliable reconstruction of thermal-conductivity coef-
ficients of complex structure [2,7,10–12],

� the search for sufficient conditions of the solvability of inverse
heat-conduction problems that are close to the needed condi-
tions [13,14].

We note that the reconstruction of the coefficients of a complex
structure whose plots have, for example, breakpoints are of impor-
tance for investigation of phase transitions. The conditions of the
uniqueness of the solution of an inverse problem are important
in planning physical experiments on determining the characteris-
tics of materials.

At the present time, in numerical solution of inverse problems
in the mathematical physics, various methods of the minimization
ll rights reserved.
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of objective functionals are widely applied. In particular, the regu-
larizing properties of the conjugate gradient method are well
known [1,2]. The constituent part of this method applied to the
problem of identification of the thermal-conductivity coefficient
k(T) is computations of the values of the operator conjugate to
the inner superposition operator. The standard approach to such
computations is associated with the change of variables in the dou-
ble integral, which leads to a complex and hard-to-control numer-
ical procedure. In view of this, in many publications (see, e.g.
[2,3,7,12,15,16]), the finite-dimensional approximation of sought
coefficients was considered. Thereby the initial, functional, and
consequently, infinite-dimensional problem was interpreted in
these works as a finite-dimensional one. Inherent in such an
approach is both certain advantages associated with the regulariz-
ing properties of finite-dimensional approximations and disadvan-
tages due to the prior uncertainty in the selection of basis functions
of approximation and of their number.

In [5,7,8], a functional approach not requiring preliminary
finite-dimensional representation of the sought coefficient is pre-
sented. The authors note the limitations of their approach associ-
ated with the requirement of the solvability of the special
functional equation at each step of the iteration process.

In [9], a new approach of the functional identification of the
thermal-conductivity coefficient was suggested. In this approach,
the scheme of gradient methods of minimization of the objective
functional is used without preliminary finite-dimensional approx-
imation of the sought coefficient and without requirements of the
solvability of functional equations. This has become possible by
virtue of the new integro-differential representations obtained in
[9] for the operator conjugate to the inner superposition operator
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Nomenclature

b length of space segment
c(T) heat-capacity coefficient
G domain of definition of objective functional
h step in spatial grid
t time
tf final instant of time
T(x, t) temperature
wx spatial grid
wt time grid
wT temperature grid
x spatial coordinate
x* point of temperature measurement
k�k norm in the space L2½Tð1Þ; Tð2Þ� or W1

2½T
ð1Þ; Tð2Þ�

b coefficient of descent

k(T) thermal-conductivity coefficient
k0(T) initial approximation
kn(T) nth approximation
km(T) model function
e tolerance
st step in time grid
sT step in temperature grid
X domain of definition

Subscripts
m model
T temperature
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not associated with change of variables in double integrals. In [9],
various variants of the functional identification of the thermal-con-
ductivity coefficient are considered. They differ in the selection of
functional space and of the corresponding Hilbert norm for the
function k(T). Work [10] is devoted to numerical realization of
the method of functional identification. The work also considers
some qualitative properties of the variants of functional identifica-
tion. In particular, the boundary effects appearing on reconstruc-
tion of coefficients by the method of functional identification and
associated with that or other choice of the Hilbert norm of coeffi-
cients in the Sobolev spaces are noted in [10]. The numerical stabil-
ity of algorithms in a wide range of perturbations of the input data
of an inverse problem is noted.

This work presents the investigations that were begun in [9,10].
Here, we present a brief description of the algorithmic part of the
functional identification approach and in Appendix A gives differ-
ence schemes for linear and nonlinear unsteady-state initial
boundary-value problems being a constituent part of the scheme
of conjugate gradients for reconstruction of the thermal-conduc-
tivity coefficient in a nonlinear unsteady-state heat-conduction
equation. We discuss the problems of organization of the computa-
tional process and consider the results of computational
experiments.

2. Statement of the problem

In the domain X ¼ fðx; tÞ : 0 < x < b; 0 < t 6 tfg, we will con-
sider the nonlinear parabolic equation

cðTÞ oT
ot
¼ o

ox
kðTÞ oT

ox

� �
ð1Þ

with the initial conditions

Tðx;0Þ ¼ TðxÞ; x 2 ð0; bÞ; ð2Þ

and boundary-value conditions

Tð0; tÞ ¼ g1ðtÞ; Tðb; tÞ ¼ g2ðtÞ; t 2 ½0; tf �: ð3Þ

The initial and boundary-value conditions are consistent,
cðTÞ; kðTÞ; TðxÞ; g1ðtÞ and g2ðtÞ are given functions.

Problems (1)–(3) describe the processes of heat transfer, diffu-
sion, and filtration in nonlinear media. In what follows, for the sake
of definiteness, we will assume that conditions (1)–(3) describe the
process of heat transfer. A direct problem for finding the function
T(x, t) is formulated in the form of Eqs. (1)–(3). The methods of
solving the given direct heat-conduction problem, both analytical
[17] and numerical ones [18], are well known.
We will consider an inverse problem in which along with T(x, t)
the thermal-conductivity coefficient k(T) is also unknown. The
solution of such a problem can be found from conditions (1)–(3)
and from the additional condition

Tðx�; tÞ ¼ eT ðtÞ; x� 2 ð0; bÞ; 8t 2 ½0; tf �; ð4Þ

where x* is the fixed point at which temperature is measured.
The present statement of the inverse problem is a classical one.

Methodically the solvability of this problem is based on the well-
known results obtained by Muzylev, Klibanov, and Alifanov et al.
(the review of these results is given in [2,6,7,11]), from which the
existence and uniqueness of problem solution with additional lim-
itations on the input data cðTÞ; TðxÞ; g1ðtÞ; g2ðtÞ; and eT ðtÞ follow.
In particular, apart from the standard requirement of positiveness,
continuity, and piecewise differentiability of the function c(T) for
the uniqueness of the solution it is sufficient to require that the fol-
lowing conditions be satisfied: TðxÞ ¼ const, g1ðtÞ; g2ðtÞ; eT ðtÞ are
monotonically increasing functions.

3. Algorithm

We propose the iterative algorithm for minimization of the
objective functional:

JðkÞ ¼
Z tf

0
Tðx�; tÞ � eT ðtÞ� �2

dt: ð5Þ

Following [9,10], we consider three variants of the algorithm, mark-
ing them with the index i = 1,2,3. In the first of them (i = 1), we as-
sume that the domain, G, of the functional J coincides with some
open set in the Hilbert space, L2½T ð1Þ; Tð2Þ�, of square integrable func-
tions with the norm,

kkki¼1 ¼
Z Tð2Þ

Tð1Þ
ðkðnÞÞ2 dn

 !1
2

; ð6Þ

where Tð1Þ ¼minðx;tÞ2XTðx; tÞ and Tð2Þ ¼ maxðx;tÞ2XTðx; tÞ. For i = 2,3,
the domain G coincides with an open set in the Sobolev space of
absolute integrable functions, W1

2½T
ð1Þ; T ð2Þ�. When i = 2, the norm

is defined as

kkki¼2 ¼ k Tð1Þ
� �� �2

þ
Z Tð2Þ

Tð1Þ

dkðnÞ
dn

� �2

dn

 !1
2

; ð7Þ

and when i = 3, it is defined by
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kkki¼3 ¼ k Tð2Þ
� �� �2

þ
Z Tð2Þ

Tð1Þ

dkðnÞ
dn

� �2

dn

 !1
2

: ð8Þ

These three algorithms’ variants differ from each other by the qual-
ity of approximations of the function k(T) in the boundary points
kðTð1ÞÞ and kðTð2ÞÞ. Moreover, the variants II and III have a strong
smoothing property. On the other hand, the variant I allows us to
restore the function k(T) in the neighborhood of the breakpoints
of a plot k(T) almost without any lost of accuracy. The properties
of the algorithm are described in detail in Appendix A and in the pa-
per [10].

The algorithm of the functional identification of the inverse
problems (1)–(4) is describes as follows. The initial input data con-
stitute the initial approximation k0(T) to the function k(T) along
with the data eT ðtÞ measured at the fixed point x* at any time
t 2 ½0; tf � and the null values of l�1 (see Eq. (10)). The output data
on nth + 1 iteration step are two functions, lnðTÞ and knþ1ðTÞ, that
are obtained from the vector recursive relations:

knþ1ðTÞ ¼ knðTÞ � bnlnðTÞ; n 2 f0;1;2; . . .g; k0 is given; ð9Þ
lnðTÞ ¼ J0ikn

ðTÞ þ ci
n�1ln�1ðTÞ; n 2 f0;1;2; . . .g; l�1 ¼ 0; ð10Þ

where knþ1ðTÞ is the nth + 1 approximation to k(T), lnðTÞ is the direc-
tion of descent on the nth + 1 iteration, parameters bn, ci

n�1, and J0ikn

are defined by the relations (13)–(20). The flow-chat of the nth + 1
iteration is schematically presented in Fig. 1. The recurrence rela-
tions (9) and (10) are an essential part of the conjugate gradient
method [2,9]. The iteration is stopped whenZ tf

0
pnðtÞ

2 dt 6 e; pnðtÞ ¼ Tnðx�; tÞ � eT ðtÞ; ð11Þ

where e is the tolerance, and Tnðx; tÞ is the solution of the following
initial boundary value problem:

cðTnÞ
oTn

ot
¼ o

ox
knðTnÞ

oTn

ox

� �
; ðx; tÞ 2 X;

Tnðx;0Þ ¼ TðxÞ; x 2 ð0; bÞ; Tnð0; tÞ ¼ g1ðtÞ;
Tnðb; tÞ ¼ g2ðtÞ; t 2 ½0; tf �:

ð12Þ

Selection of the tolerance e is based on the discrepancy principle
and generalized discrepancy principle, described in detail in [2].
We should note that it is helpful to renew the iteration procedures
(9) and (10) in the case of increasing of the objective functional (5)
on nth + 1 iteration. In this case, we choose the initial approxima-
tion as k0ðTÞ ¼ knðTÞ.
Fig. 1. Scheme of finding knþ1ðTÞ from the known values of knðTÞ and lnðTÞ.
Now we are going to describe the algorithm of determination of
parameters bn; ci

n�1; and J0ikn
. The function J0ikn

is the gradient of the
functional (5) at the point k ¼ kn and it is calculated according to
the procedure described in [9,10] for each variant i 2 {1,2,3}
according to one of the following formulas:

J0ikn
ji¼1 ¼ �

d
dz

Z b

0

Z tf

0
vðz; Tnðx; tÞÞ

oTnðx; tÞ
ox

ownðx; tÞ
ox

dt dx

� � d
dz

Z
X

Rðz; x; tÞ oTnðx; tÞ
ox

ownðx; tÞ
ox

dxdt; ð13Þ

J0ikn
ji¼2 ¼ �

Z
X

oTnðx; tÞ
ox

ownðx; tÞ
ox

dxdt

�
Z z

Tð1Þ

Z
X

rðs; x; tÞ oTnðx; tÞ
ox

ownðx; tÞ
ox

dxdtds; ð14Þ

J0ikn
ji¼3 ¼ �

Z
X

oTnðx; tÞ
ox

ownðx; tÞ
ox

dxdt

�
Z Tð2Þ

z

Z
X

Rðs; x; tÞ oTnðx; tÞ
ox

ownðx; tÞ
ox

dxdt ds: ð15Þ

Here

vðz; sÞ ¼ 1; if Tð1Þ 6 s 6 z;

0; if z 6 s 6 T ð2Þ;

(
is the characteristic function of the set fsjTð1Þ 6 s 6 zg;
Rðz; x; tÞ and rðz; x; tÞ are the characteristic functions of the sets
KðzÞ ¼ fðx; tÞ 2 XjTnðx; tÞ 6 z 6 Tð2Þg and KðzÞ ¼ X nKðzÞ ¼ fðx; tÞ 2
XjT ð1Þ 6 z 6 Tnðx; tÞg, respectively.

The function wn ¼ wnðx; tÞ in formulas (13)–(15) is the solution
of the following non-homogeneous initial boundary value
problem:

cðTnÞ
own

ot
þ knðTnÞ

o2wn

ox2 � dðx� x�ÞpnðtÞ ¼ 0; ðx; tÞ 2 X;

wnðx; tf Þ ¼ 0; x 2 ð0; bÞ; wnð0; tÞ ¼ wnðb; tÞ ¼ 0; t 2 ½0; tf �;
ð16Þ

where dðx� x�Þ is Dirac’s function. Note that formulas (13)–(15) fol-
low from integro-differential representations of the operators con-
jugate to the inner superposition operator [9].

The parameter ci
n�1 is the ratio of squares of two norms:

ci
n�1 ¼

J0ikn

��� ���2

J0ikn�1

��� ���2 ; i ¼ 1;2;3: ð17Þ

According to (6)–(8), the squares of these norms can be expressed
as

J01kn

��� ���2

L2

¼
Z Tð2Þ

Tð1Þ
ðJ01kn
Þ2 dz;

J0ikn

��� ���2

W1
2

¼
Z

X

oTnðx; tÞ
ox

ownðx; tÞ
ox

dxdt
� �2

þ
Z Tð2Þ

Tð1Þ
l2
n;i dz; i ¼ 2;3;

ð18Þ

where

ln;2 ¼
Z

X
rðs; x; tÞ oTnðx; tÞ

ox
ownðx; tÞ

ox
dxdt;

ln;3 ¼
Z

X
Rðz; x; tÞ oTnðx; tÞ

ox
ownðx; tÞ

ox
dxdt:

Finally, the parameter bn is defined by the ratio of integrals:

bn ¼
Z tf

0
pnðsÞvnðx�; sÞds

�Z tf

0
v2

nðx�; sÞds; ð19Þ
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Fig. 3. Results of reconstruction of the coefficient km(T) according to algorithm
depending on the steps of numerical differentiation of the operator in (13): sT = 37.0
(1); sT = 21.0 (2); sT = 3.5 (3); km(T) (4); and k0(T) (5).
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Fig. 4. Results of reconstruction of the coefficient km(T) according to algorithm
depending on the values of the point x*: x* = 0.28 (1); x* = 2.0 (2); x* = 2.8 (3); km(T
(4); and k0(T) (5).
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where the function vn ¼ vnðx; tÞ is the solution of the following ini-
tial boundary value problem:

o

ot
ðcðTnÞvnÞ ¼

o2

ox2 ðknðTnÞvnÞ þ
o

ox
lnðTnÞ

oTn

ox

� �
; ðx; tÞ 2 X;

vnðx; 0Þ ¼ 0; x 2 ð0; bÞ;
vnð0; tÞ ¼ vnðb; tÞ ¼ 0; t 2 ½0; tf �:

ð20Þ

The functional identification approach has been realized
numerically. The solution of the initial boundary-value problems
posed in this section can be found by the difference method [18].
The computation of integrals in Eqs. 13,14,15, (17) and (19) is
based on the trapezium method [19]. Here, the derivatives with re-
spect to the variable x in the integrands are replaced by difference
relations of the second order of approximation. The description of
numerical algorithms that implement the functional identification
approach is given in Appendix A.

4. Numerical simulation

We will illustrate the operation of the numerical algorithms of
the functional identification approach on model examples and give
some of typical results of computational experiments.

Depending on the choice of the gradient J0ikn
ði ¼ 1;2;3Þ (Eqs.

(13)–(15)) recurrent relations (9) and (10) will be called algorithms
I, II, and III, respectively.

Example 1. The form of the model function kðTÞ ¼ kmðTÞ in
problems (1)–(4) will be selected to be rather complex (see Figs.
3–5):

kmðTÞ ¼
25:0 expðT=450:0Þ; if T < 450 �C;

6:073	 10�4ðT � 700:0Þ2 þ 30:0; if 450 �C 6 T < 900 �

9:025	 10�3T þ 46:17; if T P 900 �C:

8><>:
ð21Þ

The plots of the functions cðTÞ ¼ cmðTÞ and g1ðtÞ ¼ g2ðtÞ are given in
Fig. 2a and b, respectively. We assume that b ¼ 3:0; tf ¼
2:0; TðxÞ ¼ 30:0; and x� ¼ 1:0. As the approximation of the func-
tion eT , we take the numerical solution of the problems (1)–(3) at
the point x ¼ x�; 8t 2 ½0; tf � at cðTÞ ¼ cmðTÞ, kðTÞ ¼ kmðTÞ, obtained
by the difference scheme (27) (see Appendix A) with small steps
hi and st of grids xx (24) and xt (25) (see Appendix A).

Figs. 3–5 demonstrate the results of modeling of thermal-con-
ductivity coefficient (21) by the functional identification approach.
Fig. 3 depicts the results of the reconstruction of the coefficient
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Fig. 5. Results of calculation of the coefficient km(T) according to algorithm II and
III: (1) algorithm II; (2) algorithm III; (3) km(T); and (4) k0(T).
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km(T) according to algorithm I depending on the magnitude of the
step sT of the grid wT (26) of numerical differentiation with respect
to temperature in relation (13). Fig. 4 illustrates the dependence of
the accuracy of the result on the choice of the point x*. The calcu-
lations were carried out at the following parameters of calculation:
hi = h = 0.005, i = 1,2, . . .,N, st = 0.01, sT = 37.0, and e = 0.001 (for the
designations of the calculation parameters see Appendix A). Fig. 5
presents the results of simulation of km(T) according to algorithms
II and III at the same (as in the case of algorithm I (sT = 10.0))
parameters of computation and initial approximation.

We will compare the results of calculations according to algo-
rithms I–III. These algorithms differ in the quality of reconstruction
of the function k(T) at the edges of the segment ½Tð1Þ; T ð2Þ�. For algo-
rithm I the relations knðT ð1ÞÞ ’ k0ðT ð1ÞÞ, knðT ð2ÞÞ ’ k0ðT ð2ÞÞ hold,
where k0 is the initial approximation for kn(T). Consequently, there
is nonuniform estimation for k(T) in the vicinity of points Tð1Þ; Tð2Þ.

At the same time, calculations according to algorithm II make it
possible in the vicinity of edge T ð2Þ to approximate kn(T) to the pre-
cise solution, whereas the use of relation (15) allows one to more
precisely find k(T) in the vicinity of edge T ð1Þ. Here, both algorithms
II and III possess a smoothing property, whereas algorithm I more
precisely represents breakpoints of the plot of the function k(T).

Example 2. The proposed methods were tested also on a model
example for an equation with constant coefficients:

oT
ot
¼ a

o2T
ox2 ; a > 0� const: ð22Þ

As the solution of this equation we take the function

T ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paðt þ cÞ

p exp � ðx� dÞ2

4aðt þ cÞ

 !
: ð23Þ

Here, d, c – const, c > 0 are the parameters selected in a certain way
and making it possible to change the character of solution behavior.

The values of the functions g1ðtÞ; g2ðtÞ; eT ðtÞ; and TðxÞ are
determined in accordance with the function (23). The nonlinear
function anðTÞ will be the result of the identification of the value
of the coefficient a by the methods (9) and (10). We will present
the results of numerical calculations at the following parameters
of the model problem built: b = 2.0, tf = 2.0, d = 1.0, c = 0.3, and
x* = 1.0. Fig. 6 shows the results of reconstruction according to
algorithm I of the coefficient a = 1.0 at the initial approximation
a0 = 1.5 and in calculation with the parameters hi = h = 0.02,
F
th
3

F
a

i = 1,2, . . .,N, st = 0.001, e = 10�11 and different steps sT of the tem-
perature grid. Here, the numerical solution Tnðx; tÞ of problem (22)
obtained with the aid of the nonlinear coefficient an that corre-
sponds to curve 2 (Fig. 6) virtually coincides with the exact solu-
tion (23): the inequality max0<i<NjTni

� yij 6 0:001 holds. Fig. 7
presents the results of the reconstruction of the coefficient a = 5.0
at a0 = 4.0 according to algorithms II and III. The parameters of cal-
culations are hi = h = 0.02, i = 1,2, . . .,N, st = 0.001, sT = 0.0025, and
e = 10�11. In this case, the numerical solution of problem (22) by
the constructed nonlinear coefficients is also close to precise solu-
tion (23). Note that in the vicinity of the values of eT ðtÞ the found
approximate value of anðTÞ virtually coincides with the precise va-
lue: anðeT Þ ’ 5:0.

The results of computational experiments allow the conclusion
that the choice of the gradient Ji

kn
ði ¼ 1;2;3Þ substantially influ-

ences the accuracy of results. In calculations according to algo-
rithm I the nonuniformity of the identification of the thermal-
conductivity coefficient is observed on the edges of the segment
½Tð1Þ; Tð2Þ� (see Fig. 6 (curve 1) and Fig. 8 (curves 1 and 2)). The cal-
culations according to algorithm II yield a good result on the right
edge of this segment (Fig. 7, curve 2), whereas calculations accord-
ing to algorithm III – on the left edge (Fig. 7, curve 3).
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The nonuniformity of the identification of the coefficient in the
vicinity of the points T ð1Þ and Tð2Þ can be reduced on successful
choice of the initial approximation, grid steps, tolerance, and of
the point x*.

The experiments carried out prove the substantial depen-
dence of the accuracy of identification according to algorithm I
on the choice of the step of numerical differentiation with re-
spect to the temperature in (13). Use of a very small grid step
xT in operation with gradient (13) may lead to the incipience
of nonphysical oscillations and to a significant loss in accuracy,
which can be seen in Fig. 3 (curve 3) and Fig. 6 (curve 1). Mod-
eling of the reconstruction of the thermal-conductivity coeffi-
cient in operation with gradient (13) should be carried out in
a large range of change of the grid step sT. However, in calculat-
ing the integrals in relations (14) and (15) the value of sT should
be small enough.

The variation of the value of e in (11) makes it possible to
raise the accuracy of calculations. Fig. 8 demonstrates the influ-
ence of the value of e on the result of identification according to
algorithm I for Example 2. Here, with a change in e from 10�3 to
10�11 the number of iterations in the iteration processes (9) and
(10) changes from 1 (e = 10�3) to 70 (e = 10�11) (the remaining
parameters correspond to the calculations presented in Fig. 7).
However, it should be taken into account that the assignment
of a very small value of e may lead to an excessively great num-
ber of iteration cycles in the algorithms (9) and (10). Therefore,
it is worthwhile to follow the rate of change in the tolerance and
halt the iteration cycle in the case of a ‘‘slack” change of the
tolerance.

Thus, various computational experiments have shown that in
addition to the complex dependence of the real k(T) on tempera-
ture, the following basic factors influence the accuracy of the
reconstruction of the coefficient: (1) the choice of the initial
approximation k0(T), (2) the form of the gradient Ji

kn
ði ¼ 1;2;3Þ

used for calculations (formulas (13)–(15)), (3) the value of the tem-
perature measurement point x*, (4) the selection of the grid steps
xx, xt, xT, and (5) the value of e in relation (11).

It is difficult to indicate a prior at least one of the indicated
parameters which will yield a better result in the relationship be-
tween the accuracy and speed of calculations. Such a situation is
typical on the whole of the problems of a nonlinear numerical
analysis. The influence of the above-indicated factors on the accu-
racy and speed of calculations is usually of interrelated complex
character.
5. Conclusions

The results of the investigations carried out show that the func-
tional identification approach of the thermal-conductivity coeffi-
cient and its numerical algorithms are effective enough. To
obtain satisfactory results of the reconstruction of k(T) over the en-
tire segment ½Tð1Þ; Tð2Þ� due to the specific features of methods I, II,
III near the boundaries of the segment investigated, it is worth-
while to compile the results of computations according to methods
I, II, and III.

The proposed algorithms allow one to reconstruct the thermal-
conductivity coefficient with a discontinuous derivative with re-
spect to temperature at arbitrary, a priori unknown discontinuity
points, which seems to be especially important in modeling coeffi-
cients for problems with phase changes.
Appendix A. Numerical algorithms

The construction of approximate algorithms for solving nonlin-
ear unsteady-state boundary-value problems of mathematical
physics 1,2,3, (16) and (20) is based on the difference method [18].

In the domain X, we introduce a nonuniform grid of nodes xx:

xx ¼ xi 2 ½0; b�; xi ¼ x0 þ
Xi

k¼1

hk; i ¼ 1;2; . . . ;N; x0 ¼ 0; xN ¼ b

( )
;

ð24Þ

and a uniform grid xt:

xt ¼ ftj 2 ½0; tf �; tj ¼ st � j; j ¼ 0;1; . . . ; j0; tj0 ¼ tfg; ð25Þ

where xi is the node of the grid xx, tj is the node of the grid xt; hi is
the step of the grid xx; i ¼ 1;2; . . . ;N; �hi ¼ 0:5ðhi þ hiþ1Þ;
i ¼ 1;2; . . . ;N � 1; st is the step of the grid xt, x ¼ xx 	xt.

We construct the grid xx so that the point x ¼ x� could be its
node: x� ¼ xi� ; i� 2 f2;3; . . . ;N � 2g.

Over the segment ½Tð1Þ; Tð2Þ� we introduce a uniform grid of
nodes xT:

xT ¼ Tm 2 ½Tð1Þ; Tð2Þ�; Tm ¼ T0 þ sT �m;
n

m ¼ 0;1; . . . ;M; T0 ¼ Tð1Þ; TM ¼ Tð2Þ
o
; ð26Þ

where sT is the step of the grid xT.
We introduce the notation. Let y ¼ yj

i ¼ yðxi; tjÞ be the function
given on the grid x, i ¼ 0;1; . . . ;N; j ¼ 0;1; . . . ; j0. We define
yx ¼ ðy

j
iþ1 � yj

iÞ=hiþ1; i ¼ 0;1;2; . . . ;N � 1, yx̂ ¼ ðy
j
iþ1 � yj

iÞ=�hi; i ¼ 1;
2; . . . ;N � 1; j ¼ 0;1; . . . ; j0; y�x ¼ ðy

j
i � yj

i�1Þ=hi; i ¼ 1;2; . . . ;N; j
¼ 0;1; . . . ; j0; �y ¼ yj�1

i ¼ yðxi; tj�1Þ, y�t ¼ ðy
j
i � yj�1

i Þ=st; i ¼ 0;1;2;
. . . ;N; j ¼ 1;2; . . . ; j0.

For a certain grid operator Uðy; �yÞ we assume that
Uðy; �yÞjji ¼ Uðyj

i; y
j�1
i Þ, for example,

y�xx̂ þ cð�yÞy�tð Þjji ¼
1
�hi

yj
iþ1 � yj

i

hiþ1
� yj

i � yj
i�1

hi

 !
þ cðyj�1

i Þ
yj

i � yj�1
i

st
:

For approximate solution of problems (1)–(3), we construct the dif-
ference scheme with weights

rcðyÞ þ ð1� rÞcð�yÞð Þy�tj
j
i ¼ rKðyÞjji þ ð1� rÞKðyÞjj�1

i ; r 2 ½0;1�;
i ¼ 1;2; . . . ;N � 1; j ¼ 1;2; . . . ; j0; ð27Þ

yj
i ¼ TðxiÞ; i ¼ 0;1;2; . . . ;N; j ¼ 0;

yj
0 ¼ g1ðtjÞ; yj

N ¼ g2ðtjÞ; j ¼ 0;1;2; . . . ; j0:

Here, y is the approximate value of Tn. The grid operator KðyÞjji has
the form
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Kyjji ¼ aðyÞy�xð Þx̂
		j
i;

where aj
iðyÞ ¼ 0:5ðknðyj

i�1Þ þ knðyj
iÞÞ; i ¼ 1;2; . . . ;N; j ¼ 0;1; . . . ; j0.

At r–0 the solution of the difference scheme (27) can be found
with the aid of the following iteration process:

rc y
s� �
þ ð1� rÞcð�yÞ

� � y
sþ1
��y

st

						
j

i

¼ rðaðy
s
Þ y

sþ1
�xÞx̂ þ ð1� rÞK�y

� �				j
i

;

i ¼ 1;2; . . . ;N � 1; j ¼ 1;2; . . . ; j0; ð28Þ

y
sþ1j

0 ¼ g1ðtjÞ; y
sþ1j

N ¼ g2ðtjÞ; j ¼ 0;1;2; . . . ; j0;

s ¼ 0;1;2; . . . is the iteration number. For s ¼ 0 and r ¼ 1=2, we as-
sume that y

s j
i ¼ 2yj�1

i � yj�2
i ; i ¼ 1;2; . . . ;N � 1; j ¼ 2;3; . . . ; j0. For

j ¼ 1 and s ¼ 0, we assume that y
s j

i ¼ TðxiÞ þ stðaðTÞT�xÞx̂ji; i ¼
1;2; . . . ;N � 1. At r–1=2 for s = 0 we assume that
y
s j

i ¼ yj�1
i ; i ¼ 1;2; . . . ;N � 1; j ¼ 2;3; . . . ; j0.

The iteration is carried out till the fulfillment of the condition

yi

sþ1
� yi

s
				 				 6 e1 yi

s
			 			þ e2; i ¼ 1;2; . . . ;N � 1;

where e1 and e2 are the empirical parameters, e1 ¼ 0 if

j yi

s
j 6 1 and e2 ¼ 0 if j yi

s
j > 1; i ¼ 1;2; . . . ;N � 1. The finding of

the values of y
sþ1

i ði ¼ 0;1; . . . ;NÞ is reduced for each s = 1,2, . . . to
the solution of the system of linear algebraic equations with a
three-diagonal matrix. The solution of the system can be found with
the aid of the pivot method [18].

At known values of cðyÞ; knðyÞ the approximate values of the
function w in problem (16) on the grid x can be found from the dif-
ference relations

� ðr� 1ÞcðyÞ þ rcð�yÞð Þy��t
		j
i
¼ ðr� 1ÞknðyÞy��xx̂

			j
i
þ rknðyÞy��xx̂

				j�1

i

� f ðxiÞ ðr� 1ÞpðtjÞ þ rpðtj�1Þ

 �

; i ¼ 1;2; . . . ;N � 1;
j ¼ j0; j0 � 1; . . . ;1;

y�j0i ¼ 0; i ¼ 0;1; . . . ;N;

y�j0 ¼ y�jN ¼ 0; j ¼ j0; j0 � 1; . . . ;1;0:

Here, y� is the approximate value of w, the grid function f ðxiÞ has the
orm

f ðxiÞ ¼
0:5=�hi� ; i ¼ i� � 1; i�; i� þ 1;
0; i ¼ 1; . . . ; i� � 2; i� þ 2; i� þ 3; . . . ;N � 1:

�
The solution of the problem constructed can be found successively
for j ¼ j0 � 1; j0 � 2; . . . ;1;0 with the aid of the pivot method at r–0
and from explicit formulas at r = 0.

In solving numerically the problem (20), we assume that on
the grid x approximate grid values of Tnðxi; tjÞ are known. We
also assume that the grid values cðyÞ; knðyÞ; lnðyÞ are known.
The approximate value of problem (20) can be found on the
grid x with the aid of the difference scheme that is similar to
(28):
cðyÞ~y� cð�yÞ�~y
st

 !					
j

i

¼ r knðyÞ~yð Þ�xx̂ þ ~aðyÞ~y�xð Þx̂

 �		j

i

þ ð1� rÞ knðyÞyð Þ�xx̂ þ ~aðyÞy�xð Þx̂
�
 		j�1

i ;

i ¼ 1;2; . . . ;N � 1; j ¼ 1;2; . . . ; j0;

~yj
i ¼ 0; j ¼ 0; i ¼ 0;1; . . . ;N;

~yj
0 ¼ ~yj

N ¼ 0; j ¼ 1;2; . . . ; j0:

Here, ~yj
i is the approximate value of vðxi; tjÞ; i ¼ 0;1;

2; . . . ;N; j ¼ 0;1; . . . ; j0; ~aðyÞjji ¼ 0:5ðlnðyj
i�1Þ þ lnðyj

iÞÞ; i ¼ 1;2; . . . ;

N; j ¼ 0;1;2; . . . ; j0.
The solution of the given difference problem at j ¼ 1;2; . . . ; j0

can be found directly by the pivot method, or (r = 0) from recur-
rent relations.
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